
The 3 Normal Forms:

A Tutorial

by Fred Coulson

Copyright © Fred Coulson 2007-2016 (last revised September 13, 2016)

This tutorial may be freely copied and distributed, providing appropriate
attribution to the author is given.

Inquiries may be directed to http://phlonx.com/contact

Downloaded from http://phlonx.com/resources/nf3/

Table of Contents

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

1

Table of Contents

TABLE OF CONTENTS ...1

INTRODUCTION ..2

THE PROBLEM:
KEEPING TRACK OF A STACK OF INVOICES ...3

FIRST NORMAL FORM:
NO REPEATING ELEMENTS OR GROUPS OF ELEMENTS.............................5

SECOND NORMAL FORM:
NO PARTIAL DEPENDENCIES ON A CONCATENATED KEY..........................8

SECOND NORMAL FORM:
PHASE II ..13

THIRD NORMAL FORM:
NO DEPENDENCIES ON NON-KEY ATTRIBUTES..16

REFERENCES FOR FURTHER READING ...19

Introduction

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

2

Introduction

This is meant to be a brief tutorial aimed at beginners who want to get a
conceptual grasp on the database normalization process. I find it difficult to
visualize these concepts using words alone, so I shall rely as much as possible
upon pictures and diagrams.

To demonstrate the main principles involved, we will take the classic example of
an Invoice and level it to the Third Normal Form. We will also construct an Entity
Relationship Diagram (ERD) of the database as we go.

Important Note: This is not a description of how you would actually design and
implement a database. The sample database screenshots are not meant to be
taken literally, but merely as visual aids to show how the raw data gets shuffled
about as the table structure becomes increasingly normalized.

Purists and academics may not be interested in this treatment. I will not cover
issues such as the benefits and drawbacks of normalization. For those who wish
to pursue the matter in greater depth, a list of references for further reading is
provided at the end.

For the most part, the first three normal forms are common sense. When people
sit down to design a database, they often already have a partially-normalized
structure in mind—normalization is a natural way of perceiving relationships
between data and no special skill in mathematics or set theory is required.

In fact, whereas normalization itself is intuitive, it usually takes quite a bit of
advanced skill to recognize when it is appropriate to de-normalize a database
(that is, remove the natural efficient relationships that a normalized data structure
provides). Denormalization is a fairly common task, but it is beyond the scope of
this presentation.

To begin: First, memorize the 3 normal forms so that you can recite them in your
sleep. The meaning will become clear as we go. Just memorize them for now:

1. No repeating elements or groups of elements

2. No partial dependencies on a concatenated key

3. No dependencies on non-key attributes

The Problem:
Keeping Track of a Stack of Invoices

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

3

The Problem:

Keeping Track of a Stack of Invoices

Consider a typical invoice (Figure A).

Figure A: Invoice

Every piece of information you see here is important. How can we capture this
information in a database?

Those of us who have an ordered mind but aren't quite aware of relational
databases might decide to use a spreadsheet, such as Microsoft Excel.

The Problem:
Keeping Track of a Stack of Invoices

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

4

Figure A-1: orders spreadsheet

This isn't a bad approach, since it records every purchase made by every
customer. But what if you start to ask complicated questions, such as:

• How many 3" Red Freens did Freens R Us order in 2002?

• What are total sales of 56" Blue Freens in the state of Texas?

• What items were sold on July 14, 2003?

As your collection of invoices grows it becomes increasingly difficult to ask the
spreadsheet these questions. In an attempt to put the data into a state where we
can reasonably expect to answer such questions, we begin the normalization
process.

First Normal Form:
No Repeating Elements or Groups of Elements

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

5

First Normal Form:

No Repeating Elements or Groups of Elements

Take a look at rows 2, 3 and 4 on the spreadsheet in Figure A-1. These
represent all the data we have for a single invoice (Invoice #125).

In database lingo, this group of rows is referred to as a single database row.
Never mind the fact that one database row is made up here of three spreadsheet
rows: It's an unfortunate ambiguity of language. Academic database theoreticians
have a special word that helps a bit with the ambiguity: they refer to the "thing"
encapsulated by rows 2, 3 and 4 as a tuple (pronounced tu'ple or too'ple). We're
not going to use that word here (and if you're lucky, you'll never hear it again for
the rest of your database career). Here, we will refer to this thing as a row.

So, First Normal Form (NF1) wants us to get rid of repeating elements. What
are those?

Again we turn our attention to the first invoice (#125) in Figure A-1. Cells H2, H3,
and H4 contain a list of Item ID numbers. This is a column within our first
database row. Similarly, I2-I4 constitute a single column; same with J2-J4, K2-
K4, L2-L4, and M2-M4. Database columns are sometimes referred to as
attributes (rows/columns are the same as tuples/attributes).

You will notice that each of these columns contains a list of values. It is precisely
these lists that NF1 objects to: NF1 abhors lists or arrays within a single
database column. NF1 craves atomicity: the indivisibility of an attribute into
similar parts.

Therefore it is clear that we have to do something about the repeating item
information data within the row for Invoice #125. On Figure A-1, that is the
following cells:

• H2 through M2

• H3 through M3

• H4 through M4

Similar (though not necessarily identical) data repeats within Invoice #125's row.
We can satisfy NF1's need for atomicity quite simply: by separating each item in
these lists into its own row, as in Figure A-2.

First Normal Form:
No Repeating Elements or Groups of Elements

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

6

Figure A-2: flattened orders spreadsheet

I can hear everyone objecting: We were trying to reduce the amount of
duplication, and here we have introduced more! Just look at all that duplicated
customer data!

Don't worry. The kind of duplication that we introduce at this stage will be
addressed when we get to the Third Normal Form.

We have actually only told half the story of NF1. Strictly speaking, NF1
addresses two issues:

1. A row of data cannot contain repeating groups of similar data (atomicity)
2. Each row of data must have a unique identifier (or Primary Key)

We have already dealt with atomicity. But to make the point about Primary Keys,
we shall bid farewell to the spreadsheet and move our data into a relational
database management system (RDBMS). Here we shall use Microsoft Access to
create the orders table, as in Figure B:

Figure B: orders table

This looks pretty much the same as the spreadsheet, but the difference is that
within an RDBMS we can identify a primary key. A primary key is
a column (or group of columns) that uniquely identifies each row.

As you can see from Figure B, there is no single column that
uniquely identifies each row. However, if we put a number of
columns together, we can satisfy this requirement.

The two columns that together uniquely identify each row are
order_id and item_id: no two rows have the same combination
of order_id and item_id. Therefore, together they qualify to be
used as the table's primary key. Even though they are in two different table
columns, they are treated as a single thing. We call them concatenated.

A value that uniquely
identifies a row is called a
primary key.

When this value is made
up of two or more
columns, it is referred to
as a concatenated
primary key.

First Normal Form:
No Repeating Elements or Groups of Elements

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

7

The underlying structure of the orders table can
be represented as Figure C.

We identify the columns that make up the
primary key with the PK notation. Figure C is the
beginning of our Entity Relationship Diagram
(or ERD).

Our database schema now satisfies the two
requirements of First Normal Form: atomicity
and uniqueness. Thus it fulfills the most basic
criterion of a relational database.

What's next?

Figure C: orders table structure

Second Normal Form:
No Partial Dependencies on a Concatenated Key

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

8

Second Normal Form:

No Partial Dependencies on a Concatenated Key

Next we test each table for partial dependencies on a concatenated key. This
means that for a table that has a concatenated primary key, each column in the
table that is not part of the primary key must depend upon the entire
concatenated key for its existence. If any column only depends upon one part of
the concatenated key, then we say that the entire table has failed Second Normal
Form and we must create another table to rectify the failure.

Still not clear? To try and understand this, let's take apart the orders table
column by column. For each column we will ask the question,

Can this column exist without one or the other part of the
concatenated primary key?

If the answer is "yes" — even once — then the table fails Second Normal Form.

Refer to Figure C again to remind us of the orders
table structure.

First, recall the meaning of the two columns in the
primary key:

• order_id identifies the invoice that this item
comes from.

• item_id is the inventory item's unique identifier.
You can think of it as a part number, inventory
control number, SKU, or UPC code.

We don't analyze these columns (since they are part
of the primary key). Now consider the remaining
columns...

order_date is the date on which the order was made.
Obviously it relies on order_id; an order date has to
have an order, otherwise it is only a date. But can an
order date exist without an item_id?

The short answer is yes: order_date relies on order_id, not item_id. Some of you
might object, thinking that this means you could have a dated order with no items
(an empty invoice, in effect). But this is not what we are saying at all: All we are
trying to establish here is whether a particular order on a particular date relies on
a particular item. Clearly, it does not. The problem of how to prevent empty

Figure C: orders table structure

Second Normal Form:
No Partial Dependencies on a Concatenated Key

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

9

orders falls under a discussion of "business rules" and could be resolved using
check constraints or application logic; it is not an issue for Normalization to solve.

Therefore: order_date fails Second Normal Form.

But let's continue with testing the other columns. We have to find all the columns
that fail the test, and then we do something special with them.

customer_id is the ID number of the customer who placed the order. Does it rely
on order_id? No: a customer can exist without placing any orders. Does it rely
on item_id? No: for the same reason. This is interesting: customer_id (along with
the rest of the customer_* columns) does not rely on either member of the
primary key. What do we do with these columns?

We don't have to worry about them until we get to Third Normal Form. We mark
them as "unknown" for now.

item_description is the next column that is not itself part of the primary key. This
is the plain-language description of the inventory item. Obviously it relies on
item_id. But can it exist without an order_id?

Yes! An inventory item (together with its "description") could sit on a warehouse
shelf forever, and never be purchased... It can exist independent of an order.
item_description fails the test.

item_qty refers to the number of items purchased on a particular invoice. Can
this quantity exist without an item_id? Impossible: we cannot talk about the
"amount of nothing" (at least not in database design). Can the quantity exist
without an order_id? No: a quantity that is purchased with an invoice is
meaningless without an invoice. So this column does not violate Second Normal
Form: item_qty depends on both parts of our concatenated primary key.

item_price is a tricky one. At first glance it seems similar to item_description:
the price of an item has nothing to do with the order it is part of, it depends only
on the item_id and thus violates Second Normal Form. But let's think a little bit
about that. What happens if the price of an item changes? What if you need to
keep track of the changing item price over time?

A common-sense thing to do would be to regard the item price as dependent on
both the item and the order. Whether this solution is appropriate or not would
depend on the needs of the business you are modeling. The point is that this is
not a question that can be addressed by the Normalization process alone; once
again, we have a matter that falls under the discussion of business rules. For the
sake of simplicity I have chosen to create this tutorial in a world where prices
never change, and within this static and rarified world, item_price fails Second
Normal Form.

Second Normal Form:
No Partial Dependencies on a Concatenated Key

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

10

item_total_price is another tricky one, but for a different reason. On the one
hand, it seems to depend on both order_id and item_id, in which case it passes
Second Normal Form. On the other hand, it is a derived value: it is merely the
product of item_qty and item_price. What to do with this field?

In fact, this field does not belong in our database at all. It can easily be
reconstructed outside of the database proper; to include it would be redundant
(and could quite possibly introduce corruption). Therefore we will discard it and
speak of it no more.

order_total_price, the sum of all the item_total_price fields for a particular order,
is another derived value. We discard this field too.

Here is the markup from our NF2 analysis of the orders table:

What do we do with a table that fails Second
Normal Form, as this one has? First we take
out the second half of the concatenated
primary key (item_id) and put it in its own
table.

All the columns that depend on item_id -
whether in whole or in part - follow it into the
new table. We call this new table
order_items (see Figure D).

The other fields — those that rely on just the
first half of the primary key (order_id) and
those we aren't sure about — stay where
they are.

Figure C (revised):

Second Normal Form:
No Partial Dependencies on a Concatenated Key

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

11

Figure D: orders and order_items tables

There are several things to notice:

1. We have brought a copy of the order_id column over into the order_items
table. This allows each order_item to "remember" which order it is a part of.

2. The orders table has fewer rows than it did before.
3. The orders table no longer has a concatenated primary key. The primary

key now consists of a single column, order_id.
4. The order_items table does have a concatenated primary key.

Here is the table structure (Figure E):

Figure E: orders and order_items table structure

Second Normal Form:
No Partial Dependencies on a Concatenated Key

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

12

If you are new to Entity Relationship Diagrams, pay close attention to the line that
connects these two tables. This line means, in English,

• each order can be associated with any number of
order-items, but at least one;

• each order-item is associated with one order, and
only one.

There are other ways of depicting these table-to-table relationships; here I am
using one of many standard conventions.

Second Normal Form: Phase II

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

13

Second Normal Form: Phase II

But wait, there's more!

Remember, NF2 only applies to tables with a concatenated primary key. Now
that orders has a single-column primary key, it has passed Second Normal
Form. Congratulations!

order_items, however, still has a concatenated primary key. We have to pass it
through the NF2 analysis again, and see if it measures up. We ask the same
question we did before:

Can this column exist without one or the other part of the
concatenated primary key?

First, refer to Figure F, to remind us of the
order_items table structure.

Now consider the columns that are not part of
the primary key...

item_description relies on item_id, but not
order_id. So (surprise), this column once again
fails NF2.

item_qty relies on both members of the
primary key. It does not violate NF2.

item_price relies on the item_id but not on the order_id, so it does violate
Second Normal Form.

We should be getting good at this now. Here is
the marked up table diagram:

Figure F:

Figure F (revised):

Second Normal Form: Phase II

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

14

So, we take the fields that fail NF2 and create a new table. We call this new table
items:

Figure G: order_items and items table

But wait, something's wrong. When we did our first pass through the NF2 test, we
took out all the fields that relied on item_id and put them into the new table. This
time, we are only taking the fields that failed the test: in other words, item_qty
stays where it is. Why? What's different this time?

The difference is that in the first pass, we removed the item_id key from the
orders table altogether, because of the one-to-many relationship between orders
and order-items. Therefore the item_qty field had to follow item_id into the new
table.

In the second pass, item_id was not removed from the order_items table
because of the many-to-one relationship between order-items and items.
Therefore, since item_qty does not violate NF2 this time, it is permitted to stay in
the table with the two primary key parts that it relies on.

Second Normal Form: Phase II

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

15

This should be clearer with a new ERD. Here is how the items table fits into the
overall database schema:

Figure H:

The line that connects the items and order_items tables means the following:

• Each item can be associated with any number of lines on any number of
invoices, including zero;

• each order-item is associated with one item, and only one.

These two lines are examples of one-to-many relationships. This three-table
structure, considered in its entirety, is how we express a many-to-many
relationship:

Each order can have many items; each item can belong to
many orders.

Notice that this time, we did not bring a copy of the order_id column into the new
table. This is because individual items do not need to have knowledge of the
orders they are part of. The order_items table takes care of remembering this
relationship via the order_id and item_id columns. Taken together these columns
comprise the primary key of order_items, but taken separately they are foreign
keys or pointers to rows in other tables. More about foreign keys when we get to
Third Normal Form.

Notice, too, that our new table does not have a concatenated primary key, so it
automatically passes NF2. At this point, we have succeeded in attaining Second
Normal Form!

Third Normal Form:
No Dependencies on Non-Key Attributes

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

16

Third Normal Form:

No Dependencies on Non-Key Attributes

At last, we return to the problem of the repeating Customer information. As our
database now stands, if a customer places more than one order then we have to
input all of that customer's contact information again. This is because there are
columns in the orders table that rely on "non-key attributes".

To better understand this concept, consider the order_date column. Can it exist
independent of the order_id column? No: an "order date" is meaningless without
an order. order_date is said to depend on a key attribute (order_id is the "key
attribute" because it is the primary key of the table).

What about customer_name — can it exist on its own, outside of the orders
table?

Yes. It is meaningful to talk about a customer name without referring to an order
or invoice. The same goes for customer_address, customer_city, and
customer_state. These four columns actually rely on customer_id, which is not
a key in this table (it is a non-key attribute).

These fields belong in their own table, with customer_id as the primary key (see
Figure I).

Figure I:

However, you will notice in Figure I that we have severed the relationship
between the orders table and the Customer data that used to inhabit it.

This won't do at all.

Third Normal Form:
No Dependencies on Non-Key Attributes

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

17

We have to restore the relationship by creating something called a foreign key
(indicated in our diagram by (FK)) in the orders table. A foreign key is essentially
a column that points to the primary key in another table. Figure J describes this
relationship, and shows our completed ERD:

Figure J:

The relationship that has been established between the orders and customers
table may be expressed in this way:

• each order is made by one, and only one customer;
• each customer can make any number of orders, but at least one.

One final refinement...

You will notice that the order_id and item_id columns in order_items perform a
dual purpose: not only do they function as the (concatenated) primary key for
order_items, they also individually serve as foreign keys to the order table and
items table respectively.

Figure J.1 documents this fact, and shows our completed ERD:

Third Normal Form:
No Dependencies on Non-Key Attributes

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

18

Figure J.1: Final ERD

And finally, here is what the data in each of the four tables looks like. Notice that
NF3 removed columns from a table, rather than rows.

Figure K:

References for Further Reading

3 Normal Forms Tutorial http://phlonx.com/resources/nf3/

19

References for Further Reading

Needless to say, there's a lot more to it than this. If you want to read more about
the theory and practice of the 3 Normal Forms, here are some suggestions:

• The Art of Analysis, by Dr. Art Langer, devotes considerable space to
normalization. Springer-Verlag Telos (January 15, 1997)
ISBN: 0387949720

• Dr. Codd's seminal 1969 paper on database normalization:
www.acm.org/classics/nov95

• The Wikipedia article on normalization discusses all five normal forms:
en.wikipedia.org/wiki/Database_normalization

